
Journal of Computational Physics 217 (2006) 123–142

www.elsevier.com/locate/jcp
Coarse-gradient Langevin algorithms for dynamic
data integration and uncertainty quantification

P. Dostert a, Y. Efendiev a, T.Y. Hou b,*, W. Luo b

a Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, United States
b Applied Mathematics, Caltech, Pasadena, CA 91125, United States

Received 31 August 2005; received in revised form 9 March 2006; accepted 13 March 2006
Available online 22 May 2006
Abstract

The main goal of this paper is to design an efficient sampling technique for dynamic data integration using the Langevin
algorithms. Based on a coarse-scale model of the problem, we compute the proposals of the Langevin algorithms using the
coarse-scale gradient of the target distribution. To guarantee a correct and efficient sampling, each proposal is first tested
by a Metropolis acceptance–rejection step with a coarse-scale distribution. If the proposal is accepted in the first stage, then
a fine-scale simulation is performed at the second stage to determine the acceptance probability. Comparing with the direct
Langevin algorithm, the new method generates a modified Markov chain by incorporating the coarse-scale information of
the problem. Under some mild technical conditions we prove that the modified Markov chain converges to the correct
posterior distribution. We would like to note that the coarse-scale models used in the simulations need to be inexpensive,
but not necessarily very accurate, as our analysis and numerical simulations demonstrate. We present numerical examples
for sampling permeability fields using two-point geostatistics. Karhunen–Loève expansion is used to represent the realiza-
tions of the permeability field conditioned to the dynamic data, such as the production data, as well as the static data. The
numerical examples show that the coarse-gradient Langevin algorithms are much faster than the direct Langevin algo-
rithms but have similar acceptance rates.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Uncertainties in the detailed description of reservoir lithofacies, porosity, and permeability are major
contributors to uncertainty in reservoir performance forecasting. Making decisions in reservoir management
requires a method for quantifying uncertainty. Large uncertainties in reservoirs can greatly affect the
production and decision making on well drilling. Better decisions can be made by reducing the uncertainty.
Thus, quantifying and reducing the uncertainty is an important and challenging problem in subsurface
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modeling. Additional dynamic data, such as the production data, can be used in achieving more accurate
predictions. The previous findings show that dynamic data can be used to improve the predictions and
reduce the uncertainty. Therefore, to predict future reservoir performance, the reservoir properties, such
as porosity and permeability, need to be conditioned to dynamic data. In general it is difficult to calculate
this posterior probability distribution because the process of predicting flow and transport in petroleum res-
ervoirs is nonlinear. Instead, we estimate this probability distribution from the outcomes of flow predictions
for a large number of realizations of the reservoir. It is essential that the permeability (and porosity)
realizations adequately reflect the uncertainty in the reservoir properties, i.e., we correctly sample this
probability distribution.

The prediction of permeability fields based on dynamic data is a challenging problem because permeability
fields are typically defined on a large number of grid blocks. The Markov chain Monte Carlo (MCMC)
method and its modifications have been used previously to sample the posterior distribution of the permeabil-
ity field. Oliver et al. [21,22] proposed the randomized maximum likelihood method, which generates uncon-
ditional realizations of the production and permeability data and then solves a deterministic gradient-based
inverse problem. The solution of this minimization problem is taken as a proposal and accepted with proba-
bility one because the rigorous acceptance probability is very difficult to estimate. In addition to the need of
solving a gradient-based inverse problem, this method does not guarantee a proper sampling of the posterior
distribution. Developing efficient and rigorous MCMC calculations with high acceptance rates remains a chal-
lenging problem.

In this paper, we employ the Langevin algorithms within the context of MCMC methods for sampling the
permeability field. Langevin algorithms provide efficient sampling techniques because they use the gradient
information of the target distributions. However, the direct Langevin algorithm is very expensive because it
requires the computation of the gradients with fine-scale simulations. Based on a coarse-scale model of the
problem, we propose an approach where the gradients are computed with inexpensive coarse-scale simulation.
These coarse-scale gradients may not be very accurate and, for this reason, the computed results are first tested
with coarse-scale distributions. If the result is accepted at the first stage, then a fine-scale simulation is per-
formed at the second stage to determine the acceptance probability. The first stage of the method modifies
the Markov chain generated by the direct Langevin algorithms. We can show that the modified Markov chain
satisfies the detailed balance condition for the correct distribution. Moreover, we point out that the chain is
ergodic and converges to the correct posterior distribution under some technical assumptions. The validity of
the assumptions for our application is also discussed in the paper.

For sampling the permeability fields in two-phase flows, we use a coarse-scale model based on multiscale
finite element methods. The multiscale finite element methods are used to construct coarse-scale velocity fields
which are further used to solve the transport equation on the coarse-grid. The multiscale basis functions are
not updated throughout the simulation, which provides an inexpensive coarse-scale methodology. In this
respect, the multiscale finite element methods are conceptually similar to the single-phase flow upscaling meth-
ods (see e.g. [3,5]), where the main idea is to upscale the underlying fine-scale permeability field. These types of
upscaling methods are not very accurate because the subgrid effects of transport are neglected. We would like
to note that upscaled models are used in MCMC simulations in previous findings. In a pioneering work [12],
Glimm and Sharp employed error models between coarse- and fine-scale simulations to quantify the
uncertainty.

Numerical results for sampling permeability fields using two-point geostatistics are presented in the paper.
Using the Karhunen–Loève expansion, we can represent the high dimensional permeability field by a small
number of parameters. Furthermore, the static data (the values of permeability fields at some sparse locations)
can be easily incorporated into the Karhunen–Loève expansion to further reduce the dimension of the param-
eter space. Imposing the values of the permeability at some locations restricts the parameter space to a sub-
space (hyperplane). Numerical results are presented for both single-phase and two-phase flows. In all the
simulations, we show that the gradients of the target distribution computed using coarse-scale simulations
provide accurate approximations of the actual fine-scale gradients. Furthermore, we present the uncertainty
assessment of the production data based on sampled permeability fields. Our numerical results show that
the uncertainty spread is much larger if no dynamic data information is used. However, the uncertainty spread
decreases if more information is incorporated into the simulations.
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The paper is organized as follows. In the next section, we briefly describe the model equations and their
upscaling. Section 3 is devoted to the analysis of the Langevin MCMC method and its relevance to our par-
ticular application. Numerical results are presented in Section 4.

2. Fine and coarse models

In this section, we briefly introduce a coarse-scale model used in the simulations. We consider two-phase
flows in a reservoir (denoted by X) under the assumption that the displacement is dominated by viscous effects;
i.e., we neglect the effects of gravity, compressibility, and capillary pressure. Porosity will be considered to be
constant. The two phases will be referred to as water and oil, designated by subscripts w and o, respectively.
We write Darcy’s law for each phase as follows:
vj ¼ �
krjðSÞ

lj

k � rp; ð2:1Þ
where vj is the phase velocity, k is the permeability tensor, krj is the relative permeability to phase j (j = o,w), S
is the water saturation (volume fraction) and p is pressure. Throughout the paper, we will assume that the per-
meability tensor is diagonal k = kI, where k is a scalar and I is the unit tensor. In this work, a single set of
relative permeability curves is used. Combining Darcy’s law with a statement of conservation of mass allows
us to express the governing equations in terms of the so-called pressure and saturation equations:
r � ðkðSÞkrpÞ ¼ h; ð2:2Þ
oS
ot
þ v � rf ðSÞ ¼ 0; ð2:3Þ
where k is the total mobility, h is the source term, f(S) is the flux function, and v is the total velocity, which are
respectively given by:
kðSÞ ¼ krwðSÞ
lw

þ kroðSÞ
lo

; ð2:4Þ

f ðSÞ ¼ krwðSÞ=lw

krwðSÞ=lw þ kroðSÞ=lo

; ð2:5Þ

v ¼ vw þ vo ¼ �kðSÞk � rp. ð2:6Þ
The above descriptions are referred to as the fine model of the two-phase flow problem. For the single-phase
flow, krw(S) = S and kro(S) = 1 � S.

In most upscaling procedures, the coarse-scale pressure equation is of the same form as the fine-scale
Eq. (2.2) but with an equivalent grid block permeability tensor replacing the fine-scale permeability field
(see e.g. [5]). In this work, the proposed coarse-scale model consists of the upscaling of the pressure equation
(2.2) in order to obtain the velocity field on the coarse-grid and use it in (2.3) to resolve the saturation on the
coarse-grid. The pressure equation is scaled up using a multiscale finite volume method. The multiscale finite
volume method is similar to the recently introduced multiscale finite element methods. The details of the
method are presented in Appendix A. Using the multiscale finite volume method, we obtain the coarse-scale
velocity field, which is used in solving the saturation equation on the coarse-grid. Since no subgrid modeling is
performed for the saturation equation, this upscaling procedure introduces errors. In Fig. 2.1, we plot a typical
fractional flow comparison between fine- and coarse-scale models. Fractional flow F(t) (denoted simply by F in
further discussion) is defined as the fraction of oil in the produced fluid and is given by qo/qt, where qt =
qo + qw, with qo and qw the flow rates of oil and water at the production edge of the model. More specifically,
F ðtÞ ¼ 1�
R

oXout f ðSÞvn dlR
oXout vn dl

;

where oXout is outflow boundaries and vn is the normal velocity field. In Fig. 2.1 the fractional flows are plot-
ted against the dimensionless time pore volume injected (PVI). The PVI at time T is defined as 1

V p

R T
0

qtðsÞds,
with Vp the total pore volume of the system. PVI provides the dimensionless time for the displacement.
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Fig. 2.1. Typical fine and coarse scale fractional flows.
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3. Langevin algorithm using coarse-scale models

3.1. Problem setting

The problem under consideration consists of sampling the permeability field given fractional flow measure-
ments. Typically, the prior information about the permeability field consists of its covariance matrix and the
values of the permeability at some sparse locations. Since the fractional flow is an integrated response, the map
from the permeability field to the fractional flow is not one-to-one. Hence, this problem is ill-posed in the sense
that there exist many different permeability realizations for the given production data.

From the probabilistic point of view, this problem can be regarded as conditioning the permeability fields
to the fractional flow data with measurement errors. Consequently, our goal is to sample from the conditional
distribution P(kjF), where k is the fine-scale permeability field and F is the fractional flow data. Using the
Bayes formula we can write
P ðkjF Þ / P ðF jkÞP ðkÞ. ð3:1Þ

In the above formula, P(k) is the unconditioned (prior) distribution of the permeability field. In practice, the
measured fractional flow contains measurement errors. In this paper, we assume that the measurement error
satisfies a Gaussian distribution, thus, the likelihood function P(Fjk) takes the form
P ðF jkÞ / exp �kF � F kk2

r2
f

 !
; ð3:2Þ
where F is the reference fractional flow, Fk is the fractional flow for the permeability field k, and rf is the mea-
surement precision. In practice, Fk is computed by solving the nonlinear PDE system (2.1)–(2.3) for the given k

on the fine-grid. Since both F and Fk are functions of time (denoted by t), the norm iF � Fki2 is defined as the
L2 norm
kF � F kk2 ¼
Z T

0

½F ðtÞ � F kðtÞ�2 dt.
Denote the sampling target distribution as
pðkÞ ¼ PðkjF Þ / exp �kF � F kk2

r2
f

 !
P ðkÞ. ð3:3Þ
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Since different permeability fields may produce the same fractional flow curve, the distribution p(k) is a func-
tion of k with multiple local maxima. Sampling from the distribution p(k) can be accomplished by the MCMC
method. For a given proposal distribution q(yjx), the Metropolis–Hasting MCMC algorithm (see, e.g. [23,
p. 233]) consists of the following steps.

Algorithm I. (Metropolis–Hasting MCMC, Robert and Casella [23])

� Step 1. At kn generate Y from q(Yjkn).
� Step 2. Accept Y as a sample with probability
pðkn; Y Þ ¼ min 1;
qðknjY ÞpðY Þ
qðY jknÞpðknÞ

� �
; ð3:4Þ
i.e. take kn+1 = Y with probability p(kn,Y), and kn+1 = kn with probability 1 � p(kn,Y).

The MCMC algorithm generates a Markov chain {kn} whose stationary distribution is p(k). A remaining
question is how to choose an efficient proposal distribution q(Yjkn).

An important type of proposal distribution can be derived from the Langevin diffusion, as proposed by
Grenander and Miller [13]. The Langevin diffusion is defined by the stochastic differential equation
dkðsÞ ¼ 1

2
r log pðkðsÞÞdsþ dW s; ð3:5Þ
where Ws is the standard Brownian motion vector with independent components. It can be shown that the
diffusion process k(s) has p(k) as its stationary distribution. The actual implementation of the Langevin
diffusion requires a discretization of Eq. (3.5),
knþ1 ¼ kn þ
Ds
2
r log pðknÞ þ

ffiffiffiffiffiffi
Ds
p

�n;
where �n are independent standard normal distributions. However, the discrete solution kn can have vastly dif-
ferent asymptotic behavior from the continuous diffusion process k(s) [23]. In general, the discrete solution kn

does not necessarily have p(k) as its stationary distribution. Instead of taking kn as samples directly, we use
them as test proposals for Algorithm I. The samples will be further tested and corrected by the Metropolis
acceptance–rejection step (3.4). Consequently, we choose the proposal generator q(Yjkn) in Algorithm I as
Y ¼ kn þ
Ds
2
r log pðknÞ þ

ffiffiffiffiffiffi
Ds
p

�n. ð3:6Þ
Since �n are independent Gaussian vectors, the transition distribution of the proposal generator (3.6) is
qðY jknÞ / exp �
kY � kn � Ds

2
r log pðknÞk2

2Ds

 !
;

qðknjY Þ / exp �
kkn � Y � Ds

2
r log pðY Þk2

2Ds

 !
.

ð3:7Þ
The scheme (3.6) can be regarded as a problem-adapted random walk. The gradient information of the tar-
get distribution is included to enforce a biased random walk. The use of the gradient information in inverse
problems for subsurface characterization is not new. In their original work, Oliver et al. [21,22] developed the
randomized maximum likelihood method, which uses the gradient information of the target distribution. This
approach uses unconditional realizations of the production and permeability data and solves a deterministic
gradient-based minimization problem. The solution of this minimization problem is taken as a proposal and is
accepted with probability one, since the acceptance probability is very difficult to estimate. In addition to the
need of solving a gradient-based inverse problem, this method does not guarantee a proper sampling of the
posterior distribution. Thus, developing efficient and rigorous MCMC calculations with high acceptance rates
remains a challenging problem. Though the Langevin formula (3.6) resembles the randomized maximum
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likelihood method, it is more efficient and rigorous, and one can compute the acceptance probability easily.
The Langevin algorithms also allow us to achieve high acceptance rates. However, computing the gradients
of the target distribution is very expensive. In this paper, we propose to use the coarse-scale solutions in
the computation of the gradients to speed up the Langevin algorithms.

3.2. Langevin MCMC method using coarse-scale models

The major computational cost of Algorithm I is to compute the value of the target distribution p(k) at dif-
ferent permeabilities. Since the map between the permeability k and the fractional flow Fk is governed by the
PDE system (2.1)–(2.3), there is no explicit formula for the target distribution p(k). To compute the function
p(k), we need to solve the nonlinear PDE system (2.1)–(2.3) on the fine scale for the given k. For the same
reason, we need to compute the gradient of p(k) in (3.6) numerically (by finite differences), which involves solv-
ing the nonlinear PDE system (2.1)–(2.3) multiple times. To compute the acceptance probability (3.4), the
PDE system (2.1)–(2.3) needs to be solved one more time. As a result, the direct (full) MCMC simulations
with Langevin samples are prohibitively expensive.

To bypass the above difficulties, we design a coarse-grid Langevin MCMC algorithm where most of the fine
scale computations are replaced by the coarse scale ones. Based on a coarse-grid model of the distribution
p(k), we first generate samples from (3.6) using the coarse-scale gradient of p(k), which only requires solving
the PDE system (2.1)–(2.3) on the coarse-grid. Then we further filter the proposals by an additional Metrop-
olis acceptance–rejection test on the coarse-grid. If the sample does not pass the coarse-grid test, the sample is
rejected and no further fine-scale test is necessary. The argument for this procedure is that if a proposal is not
accepted by the coarse-grid test, then it is unlikely to be accepted by the fine scale test either. By eliminating
most of the ‘‘unlikely’’ proposals with cheap coarse-scale tests, we can avoid wasting CPU time simulating the
rejected samples on the fine-scale.

To model p(k) on the coarse-scale, we define a coarse-grid map F �k between the permeability field k and the
fractional flow F. The map F �k is determined by solving the PDE system (2.1)–(2.3) on a coarse-grid. Conse-
quently, the target distribution p(k) can be approximated by
p�ðkÞ / exp �kF � F �kk
2

r2
c

 !
P ðkÞ; ð3:8Þ
where rc is the measurement precision on the coarse-grid, and should be slightly larger than rf. Then the
Langevin samples are generated from (3.6) using the coarse-grid gradient of the target distribution
Y ¼ kn þ
Ds
2
r log p�ðknÞ þ

ffiffiffiffiffiffi
Ds
p

�n. ð3:9Þ
The transition distribution of the coarse-grid proposal (3.9) is
q�ðY jknÞ / exp �
kY � kn � Ds

2
r log p�ðknÞk2

2Ds

 !
;

q�ðknjY Þ / exp �
kkn � Y � Ds

2
r log p�ðY Þk2

2Ds

 !
.

ð3:10Þ
To compute the gradient of p*(kn) numerically, we only need to solve the PDE system (2.1)–(2.3) on the
coarse-grid. The coarse-scale distribution p*(k) serves as a regularization of the original fine-scale distribution
p(k). By replacing the fine-scale gradient with the coarse-scale gradient, we can reduce the computational cost
dramatically but still direct the proposals to regions with larger probabilities.

Because of the high dimension of the problem and the discretization errors, most proposals generated by
the Langevin algorithms (both (3.6) and (3.9)) will be rejected by the Metropolis acceptance–rejection test
(3.4). To avoid wasting expensive fine-scale computations on unlikely acceptable samples, we further filter
the Langevin proposals by the coarse-scale acceptance criteria
gðkn; Y Þ ¼ min 1;
q�ðknjY Þp�ðY Þ
q�ðY jknÞp�ðknÞ

� �
;
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where p*(k) is the coarse-scale target distribution (3.8), q*(Yjkn) and q*(knjY) are the coarse-scale proposal dis-
tributions given by (3.10). Combining all the discussion above, we have the following revised MCMC algorithm.

Algorithm II. (Preconditioned coarse-gradient Langevin algorithm)

� Step 1. At kn, generate a trial proposal Y from the coarse Langevin algorithm (3.9).
� Step 2. Take the proposal k as
k ¼
Y with probability gðkn; Y Þ;
kn with probability 1� gðkn; Y Þ;

�

where
gðkn; Y Þ ¼ min 1;
q�ðknjY Þp�ðY Þ
q�ðY jknÞp�ðknÞ

� �
.

Therefore, the proposal k is generated from the effective instrumental distribution
QðkjknÞ ¼ gðkn; kÞq�ðkjknÞ þ 1�
Z

gðkn; kÞq�ðkjknÞdk
� �

dknðkÞ. ð3:11Þ
� Step 3. Accept k as a sample with probability
qðkn; kÞ ¼ min 1;
QðknjkÞpðkÞ
QðkjknÞpðknÞ

� �
; ð3:12Þ
i.e., kn+1 = k with probability q(kn,k), and kn+1 = kn with probability 1 � q(kn,k).

The step 2 screens the trial proposal Y by the coarse-grid distribution before passing it to the fine-scale test.
The filtering process changes the proposal distribution of the algorithm from q*(Yjkn) to Q(kjkn) and serves as
a preconditioner to the MCMC method. This is why we call it the preconditioned coarse-gradient Langevin
algorithm. We note that testing proposals by approximate target distributions is not a very new idea. Similar
strategies have been developed previously in [17,2].

Note that there is no need to compute Q(kjkn) and Q(knjk) in (3.12) by formula (3.11). The acceptance prob-
ability (3.12) can be simplified as
qðkn; kÞ ¼ min 1;
pðkÞp�ðknÞ
pðknÞp�ðkÞ

� �
. ð3:13Þ
In fact, this is obviously true for k = kn since q(kn,kn) ” 1. For k 6¼ kn,
QðknjkÞ ¼ gðk;knÞqðknjkÞ ¼
1

p�ðkÞ minðqðknjkÞp�ðkÞ;qðkjknÞp�ðknÞÞ ¼
qðkjknÞp�ðknÞ

p�ðkÞ gðkn; kÞ ¼
p�ðknÞ
p�ðkÞ QðkjknÞ.
Substituting the above formula into (3.12), we immediately get (3.13).
In Algorithm II, the proposals generated by (3.9) are screened by the coarse-scale acceptance–rejection test

to reduce the number of unnecessary fine-scale simulations. One can skip that preconditioning step and get the
following algorithm.

Algorithm III. (Coarse-gradient Langevin algorithm)

� Step 1. At kn, generate a trial proposal Y from the coarse Langevin algorithm (3.9).
� Step 2. Accept Y as a sample with probability
qðkn; Y Þ ¼ min 1;
q�ðknjY ÞpðY Þ
q�ðY jknÞpðknÞ

� �
; ð3:14Þ
i.e. kn+1 = Y with probability q(kn,Y), and kn+1 = kn with probability 1 � q(kn,Y).

We will demonstrate numerically that Algorithm II is indeed more efficient than Algorithm III.
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In a previous work [10], we studied preconditioning the MCMC algorithms by coarse-scale models, where
the independent sampler and random walk sampler are used as the instrumental distribution. In this paper,
our goal is to show that one can use coarse-scale models in Langevin algorithms. In particular, we can use
coarse-scale gradients instead of fine-scale gradients in these algorithms. Our numerical experiments show that
the coarse-scale distribution somewhat regularizes (smooths) the fine-scale distribution, which allows us to
take larger time steps in the Langevin algorithm (3.9). In addition, we employ the preconditioning technique
from [10] to increase the acceptance rate of the coarse-gradient Langevin algorithms.

3.3. Analysis of the coarse-gradient Langevin algorithms

In this section, we will briefly discuss the convergence property of the preconditioned coarse-grid Langevin
algorithm. Denote
E ¼ fk; pðkÞ > 0g;
E� ¼ fk; p�ðkÞ > 0g;
D ¼ fk; q�ðkjknÞ > 0 for any kn 2 Eg.

ð3:15Þ
The set E is the support of the posterior (target) distribution p(k). E contains all the permeability fields k which
have a positive probability of being accepted as a sample. Similarly, E� is the support of the coarse-scale
distribution p*(k), which contains all the k acceptable by the the coarse-scale test. D is the set of all possible
proposals which can be generated by the Langevin distribution q*(kjkn). To make the coarse-gradient Langevin
MCMC methods sample properly, the conditions E � D and E � E� must hold (up to a zero measure
set) simultaneously. If one of these conditions is violated, say, E 6� E�, then there will exist a subset
A � ðE n E�Þ such that
pðAÞ ¼
Z

A
pðkÞdk > 0 and p�ðAÞ ¼

Z
A

p�ðkÞdk ¼ 0;
which means no element of A can pass the coarse-scale test and A will never be visited by the Markov chain
{kn}. For Langevin algorithms, E � D is always satisfied since D is the whole space. By choosing the param-
eter rc in p*(k) properly, the condition E � E� can also be satisfied. A typical choice would be rc 	 rf. More
discussions on the choice of rc can be found in [10], where a two-stage MCMC algorithm is discussed.

Denote by K the transition kernel of the Markov chain {kn} generated by Algorithm II. Since its effective
instrumental proposal is Q(kjkn), the transition kernel K has the form
Kðkn; kÞ ¼ qðkn; kÞQðkjknÞ; k 6¼ kn;

Kðkn; fkngÞ ¼ 1�
Z

k 6¼kn

qðkn; kÞQðkjknÞdk.
ð3:16Þ
That is, the transition kernel K(kn,Æ) is continuous when k 6¼ kn and has a positive probability at the point
k = kn. First, we show that K(kn,k) satisfies the detailed balance condition, that is
pðknÞKðkn; kÞ ¼ pðkÞKðk; knÞ ð3:17Þ

for all k, kn. The equality is obvious when k = kn. If k 6¼ kn, then
pðknÞKðkn; kÞ ¼ pðknÞqðkn; kÞQðkjknÞ ¼ minðQðkjknÞpðknÞ;QðknjkÞpðkÞÞ

¼ min
QðkjknÞpðknÞ
QðknjkÞpðkÞ

; 1

� �
QðknjkÞpðkÞ ¼ qðk; knÞQðknjkÞpðkÞ ¼ pðkÞKðk; knÞ.
Using the detailed balance condition (3.17), we can easily show that for any measurable set A � E the expres-
sion pðAÞ ¼

R
Kðk;AÞdk holds. So p(k) is indeed the stationary distribution of the transition kernel K(kn,k).

In Algorithm II, the proposal distribution (3.9) satisfies the positivity condition
q�ðkjknÞ > 0 for everyðkn; kÞ 2 E
 E. ð3:18Þ

With this property, we can easily prove the following lemma.
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Lemma 3.1. If E � E�, then the chain {kn} generated by Algorithm II is strongly p-irreducible.

Proof. According to the definition of strong irreducibility, we only need to show that K(kn,A) > 0 for any
kn 2 E and any measurable set A � E with p(A) > 0. From the formula (3.16) we have
Kðkn;AÞP
Z

Ankn

Kðkn; kÞdk ¼
Z

Ankn

qðkn; kÞQðkn; kÞdk ¼
Z

Ankn

qðkn; kÞgðkn; kÞqðkjknÞdk.
In the above inequality, the equal sign holds when kn 62 A. Since pðAÞ ¼
R

A pðkÞdk > 0, it follows that
m(A) = m(Ankn) > 0, where m(A) is the Lebesgue measure. If E � E�, then both q(kn,k) and g(kn,k) are posi-
tive in A. Combining the positivity condition (3.18), we can easily conclude that K(kn,A) > 0, which completes
the proof. h

For the transition kernel (3.16) of Algorithm II, there always exist certain states k� 2 E such that
K(k*, {k*}) > 0. That is, if the Markov chain is on state k* at step n, then it has a positive probability to remain
on state k* at step n + 1. This condition ensures that the Markov chain generated by Algorithm II is aperiodic.
Based on the irreducibility and stability property of Markov chains [23,20], the following convergence result is
readily available.

Theorem 3.2 (Robert and Casella [23]). The Markov chain {kn} generated by the preconditioned coarse-

gradient Langevin algorithm is ergodic: for any function h(k),
lim
N!1

1

N

XN

n¼1

hðknÞ ¼
Z

hðkÞpðkÞdk. ð3:19Þ
Moreover, the distribution of kn converges to p(k) in the total variation norm
lim
n!1

sup
A2BðEÞ

jKnðk0;AÞ � pðAÞj ¼ 0 ð3:20Þ
for any initial state k0, where BðEÞ denote all the measurable subsets of E.
4. Numerical setting and results

In this section we discuss the implementation details of Langevin MCMC method and present some rep-
resentative numerical results. Suppose the permeability field k(x) is defined on the unit square X = [0, 1]2.
We assume that the permeability field k is known at some spatial locations, and the covariance of log(k) is
also known. We discretize the domain X by a rectangular mesh, hence the permeability field k is represented
by a matrix (thus k is a high dimensional vector). As for the boundary conditions, we have tested various
boundary conditions and observed similar performance for the Langevin MCMC method. In our numerical
experiments we will assume p = 1 and S = 1 on x = 0 and p = 0 on x = 1 and no flow boundary conditions on
the lateral boundaries y = 0 and y = 1. We have chosen this type of boundary conditions because they provide
a large deviation between coarse- and fine-scale simulations for permeability fields considered in the paper. We
will consider both single-phase and two-phase flow displacements.

Using the Karhunen–Loève expansion [19,24], the permeability field can be expanded in terms of an optimal
L2 basis. By truncating the expansion we can represent the permeability matrix by a small number of random
parameters. To impose the hard constraints (the values of the permeability at prescribed locations), we will find
a linear subspace of our parameter space (a hyperplane) which yields the corresponding values of the perme-
ability field. First, we briefly recall the facts of the Karhunen–Loève expansion. Denote Y(x,x) = log[k(x,x)],
where the random element x is included to remind us that k is a random field. For simplicity, we assume
that E[Y(x,x)] = 0. Suppose Y(x,x) is a second order stochastic process with E

R
X Y 2ðx;xÞdx <1, where E

is the expectation operator. Given an orthonormal basis {/k} in L2(X), we can expand Y(x,x) as a general
Fourier series
Y ðx;xÞ ¼
X1
k¼1

Y kðxÞ/kðxÞ; Y kðxÞ ¼
Z

X
Y ðx;xÞ/kðxÞdx.
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We are interested in the special L2 basis {/k} which makes the random variables Yk uncorrelated. That is,
E(YiYj) = 0 for all i 6¼ j. Denote the covariance function of Y as R(x,y) = E[Y(x)Y(y)]. Then such basis func-
tions {/k} satisfy
E½Y iY j� ¼
Z

X
/iðxÞdx

Z
X

Rðx; yÞ/jðyÞdy ¼ 0; i 6¼ j.
Since {/k} is a complete basis in L2(X), it follows that /k(x) are eigenfunctions of R(x,y):
Z
X

Rðx; yÞ/kðyÞdy ¼ kk/kðxÞ; k ¼ 1; 2; . . . ; ð4:1Þ
where kk ¼ E½Y 2
k � > 0. Furthermore, we have
Rðx; yÞ ¼
X1
k¼1

kk/kðxÞ/kðyÞ. ð4:2Þ
Denote hk ¼ Y k=
ffiffiffiffiffi
kk

p
, then hk satisfy E(hk) = 0 and E(hihj) = dij. It follows that
Y ðx;xÞ ¼
X1
k¼1

ffiffiffiffiffi
kk

p
hkðxÞ/kðxÞ; ð4:3Þ
where /k and kk satisfy (4.1). We assume that the eigenvalues kk are ordered as k1 P k2 P � � � The expansion
(4.3) is called the Karhunen–Loève expansion (KLE). In the KLE (4.3), the L2 basis functions /k(x) are deter-
ministic and resolve the spatial dependence of the permeability field. The randomness is represented by the
scalar random variables hk. After we discretize the domain X by a rectangular mesh, the continuous KLE
(4.3) is reduced to finite terms. Generally, we only need to keep the leading order terms (quantified by the mag-
nitude of kk) and still capture most of the energy of the stochastic process Y(x,x). For an N-term KLE
approximation Y N ¼

PN
k¼1

ffiffiffiffiffi
kk

p
hk/k, define the energy ratio of the approximation as
eðNÞ :¼ EkY Nk2

EkY k2
¼
PN

k¼1kkP1
k¼1kk

.

If kk, k = 1,2, . . ., decay very fast, then the truncated KLE would be a good approximation of the stochastic
process in the L2 sense.

Suppose the permeability field k(x,x) is a log-normal homogeneous stochastic process, then Y(x,x) is a
Gaussian process and hk are independent standard Gaussian random variables. We assume that the covari-
ance function of Y(x,x) has the form
Rðx; yÞ ¼ r2 exp � jx1 � y1j
2

2L2
1

� jx2 � y2j
2

2L2
2

 !
. ð4:4Þ
In the above formula, L1 and L2 are the correlation lengths in each dimension, and r2 = E(Y2) is a constant.
We first solve the eigenvalue problem (4.1) numerically on the rectangular mesh and obtain the eigenpairs
{kk,/k}. Since the eigenvalues decay fast, the truncated KLE approximates the stochastic process Y(x,x)
fairly well in L2 sense. Therefore, we can sample Y(x,x) from the truncated KLE (4.3) by generating Gaussian
random variables hk.

In the simulations, we first generate a reference permeability field using the full KLE of Y(x,x) and obtain
the corresponding fractional flows. To represent the discrete permeability fields from the prior (unconditioned)
distribution, we keep 20 terms in the KLE, which captures more than 95% of the energy of Y(x,x). We assume
that the permeability field is known at nine distinct points. This condition is imposed by setting
X20

k¼1

ffiffiffiffiffi
kk

p
hk/kðxjÞ ¼ aj; ð4:5Þ
where aj (j = 1, . . . , 9) are prescribed constants. For simplicity, we set aj = 0 for all j = 1, . . . , 9. In the simula-
tions we propose eleven hi and calculate the rest of hi by solving the linear system (4.5). In all the simulations,
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we test 5000 samples. Because the direct Langevin MCMC simulations are very expensive, we only select a
61 · 61 fine-scale model for single-phase flow and a 37 · 37 fine-scale model for two-phase flow. Here 61
and 37 refer to the number of nodes in each direction, since we use a finite element based approach. Typically,
we consider 6 or 10 times coarsening in each direction. In all the simulations, the gradients of the target
distribution are computed using finite-difference differentiation rule. The time step size Ds of the Langevin
algorithm is denoted by d. Based on the KLE, the parameter space of the target distribution p(k) will change
from k to h in the numerical simulations, and the Langevin algorithms can be easily rewritten in terms of h.

Our first set of numerical results are for single-phase flows. First, we present a comparison between the fine-
scale response surfaces p and the coarse-scale response surface p* defined by (3.3) and (3.8), respectively.
Because both p and p* are scalar functions of 11 parameters, we plot the restriction of them to a 2D hyper-
plane by fixing the values of 9h. In Fig. 4.1, p* (left figure) and p (right figure) are depicted on such a 2D hyper-
plane. It is clear from these figures that the overall agreement between the fine- and coarse-scale response
surfaces is good. This is partly because the fractional flow is an integrated response. However, we notice that
the fine-scale response surface p has more local features and varies on smaller scales compared to p*.

In Fig. 4.2, we compare the acceptance rates of Algorithms I–III with different coarse-scale precision rc.
The acceptance rate is defined as the ratio between the number of accepted permeability samples and the num-
ber of fine-scale acceptance–rejection test. Since Algorithm I does not depend on the coarse-scale precision, its
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Fig. 4.1. Left: Coarse-scale response surface p* (defined by (3.8)) restricted to a 2D hyperplane. Right: Fine-scale response surface p
(defined by (3.3)) restricted to the same 2D hyperplane.
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Fig. 4.2. Acceptance rate comparison between the direct fine-scale Langevin, preconditioned coarse-gradient Langevin and coarse-
gradient Langevin algorithms for single-phase flow; d = 0.05, r2

f ¼ 0:003. In the left plot, the coarse-grid 11 · 11 is used in the simulation.
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acceptance rate is the same for different rc. As we can see from the figure, Algorithm II has higher acceptance
rates than Algorithm III. The gain in the acceptance rates is due to the Step 2 of Algorithm II, which filters
unlikely acceptable proposals. To compare the effect of different degrees of coarsening, we plot in Fig. 4.2 the
acceptance rate of Algorithm II using both 7 · 7 coarse models and 11 · 11 coarse models. Since 11 · 11
coarse models are more accurate, its acceptance rate is higher. In Fig. 4.3, we present the numerical results
where larger time step d is used in the Langevin algorithms. Comparing with Fig. 4.2, we find that that the
acceptance rates for all the three methods decrease as d increases. In all the numerical results, the Algorithm
I, which uses the fine-scale Langevin method (3.6), gives a slightly higher acceptance rate than both Algo-
rithms II and III. However, Algorithm I is more expensive than Algorithms II and III since it uses the fine-
scale gradients in computing the Langevin proposals. In Fig. 4.4, we compare the CPU time for the different
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Fig. 4.3. Acceptance rate comparison for the direct fine-scale Langevin, preconditioned coarse-gradient Langevin and coarse-gradient
Langevin algorithms for single-phase flow, d = 0.1, r2

f ¼ 0:003.

0.003 0.006 0.009 0.012

10
4.1

10
4.2

10
4.3

10
4.4

10
4.5

10
4.6

10
4.7

10
4.8

10
4.9

σ
c
2 σ

c
2 σ

c
2

preconditioned coarse Langevin

coarse Langevin 

fine scale Langevin

0.003 0.006 0.009 0.012

10
4.1

10
4.2

C
PU

 T
im

e 
(l

og
 s

ca
le

)

C
PU

 T
im

e 
(l

og
 s

ca
le

)

preconditioned coarse Langevin

coarse Langevin

0.003 0.006 0.009 0.012

10
4.1

10
4.2

C
PU

 T
im

e 
(l

og
 s

ca
le

)

preconditioned coarse Langevin

coarse Langevin

Fig. 4.4. CPU time (seconds) comparison for the different Langevin algorithms. Left: r2
f ¼ 0:003, d = 0.05, 11 · 11 coarse-grid. Middle:

r2
f ¼ 0:003, d = 0.05, 7 · 7 coarse-grid. Right: r2

f ¼ 0:003, d = 0.1, 11 · 11 coarse-grid.



P. Dostert et al. / Journal of Computational Physics 217 (2006) 123–142 135
Langevin methods. From the left plot we see that Algorithm I is several times more expensive than Algorithms
II and III. In the middle and right plots, we compare Algorithms II and III when a different coarse-model and
a different time step size d are used, respectively. We observe that the preconditioned coarse-gradient Langevin
algorithm is slightly faster than the coarse Langevin algorithm without preconditioning.

In all the above numerical simulations, we choose the fine-scale error precision r2
f ¼ 0:003. The scaling of

the error precision depends on the norm used in (3.3). If one choses rf to be very large, then the precision is
very low, and consequently, most proposals will be accepted in the direct Langevin algorithm as well as in the
coarse-gradient Langevin algorithms. In this case, the acceptance rates of the coarse-gradient Langevin algo-
rithms are still similar to the acceptance rate of the direct Langevin algorithm. However, for very large rf, the
preconditioning step in Algorithm II may not help to improve the acceptance rate, since most proposals will
pass the preconditioning step.

Next we compare the fractional flow errors for the preconditioned coarse-gradient Langevin method and
the direct fine-scale Langevin method in Fig. 4.5. Our objective is twofold. First, we would like to compare
the convergence rates of the preconditioned coarse-gradient Langevin algorithm with that of the fine-scale
(direct) Langevin algorithm. Second, we would like to show that the sampled permeability fields give nearly
the same fractional flow response as the reference fractional flow data. We see from the left plot that both
methods converge to the steady state within the same number of iterations. In the right plot, the fractional
flows for sampled realizations are plotted (dotted lines). The fractional flows of the sampled realizations
are very close to the reference fractional flow. This is because the error precision is taken to be small
ðr2

f ¼ 0:003Þ in the target distribution. In Fig. 4.6, some permeability realizations sampled from the posterior
distribution are plotted. In particular, we plot realizations which do not look very similar to each other
and represent the uncertainty range observed in our simulations. We observe that the samples capture some
features of the reference permeability field. Note that all these permeability fields give nearly the same frac-
tional flows as the reference fractional flow, so they are all eligible samples.

Next we consider two-phase flow simulations. Because two-phase flow simulations are computationally
intensive, we restrict our computations to the fine grid 37 · 37, and the coarse-grid 7 · 7. In all simulations,
we set r2

f ¼ 0:003 and d = 0.05. Fig. 4.7 shows the response surfaces p and p* restricted to a two dimensional
hyperplane in h. As in the case of the single-phase flow, p* approximates p very well in large scales, though p
has more variations on small scales. In Fig. 4.8, the acceptance rates for the Algorithms I–III are compared.
As we can see from this figure, the acceptance rates of Algorithm II is very similar to that of Algorithm I.
Without preconditioning, Algorithm III has lower acceptance rates than Algorithm II. Comparing the
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Fig. 4.6. Samples of the permeability realizations. Realizations are selected to represent the uncertainty range in the simulations.

Fig. 4.7. Left: Coarse-scale response surface p* restricted to 2D hyperplane. Right: Fine-scale response surface p restricted to the same 2D
hyperplane.
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CPU time in Fig. 4.9, we observe that the preconditioned coarse-gradient Langevin method is an order of
magnitude faster than the direct fine-scale Langevin method. If the resolution of the fine-grid is increased,
one can expect an even higher acceleration rate by Algorithm II. In Table 4.1, we compare the coarse-gradient
and the direct Langevin algorithms for different coarse grid resolutions. In these numerical results, we have
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Fig. 4.9. CPU times (s) for Langevin algorithms. r2
f ¼ 0:003, d = 0.05, 7 · 7 coarse-grid.

Table 4.1
Comparison of Algorithms I–III for different coarse-grid resolutions in two-phase flow simulations

Coarse grid Coarse Coarse preconditioned Direct

Accept. rate CPU Accept. rate CPU Accept. rate CPU

4 · 4 0.47 8527 0.55 7036 0.53 655895
7 · 7 0.45 21859 0.52 17051 0.53 655895
10 · 10 0.46 70964 0.57 48653 0.53 655895

r2
f ¼ r2

c ¼ 0:003, d = 0.05.
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chosen r2
c ¼ 0:003, though similar results are observed for other values of r2

c . We also observe that the pre-
conditioned coarse-gradient Langevin algorithm has higher acceptance rate and lower CPU time compared
to the coarse-gradient Langevin algorithm without preconditioning for all coarse grid resolutions.

In Fig. 4.10, the fractional flow errors and fractional flows are plotted. In the two-phase flow case, we
observe that the fine-grid Langevin algorithm converges slightly faster than the preconditioned coarse-gradi-
ent Langevin method. Finally, in Fig. 4.11, we plot some permeability realizations. We selected the samples
which do not look very similar to each other and represent the uncertainty range observed in the simulations.
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Fig. 4.11. Samples of the permeability realizations. Realizations are selected to represent the uncertainty range in the simulations.
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This figure illustrates that the sampled permeability realizations capture the main features of the reference per-
meability field.

Next, we compare the theoretical computational costs of the three Langevin algorithms for the two-phase
flow problem. Denote tf and tc as the CPU time to solve the PDE system (2.1)–(2.3) on the fine- and coarse-
grid respectively. Suppose D is the dimension of the parameter space of the permeability field k, and N is
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the number of proposals that are tested in all three Langevin algorithms. For each new Y, Algorithm I
needs to compute the target distribution p(Y) and its gradient $p(Y) on the fine-grid. If the gradient is com-
puted by the forward difference scheme, then the PDE system (2.1)–(2.3) needs to be solved on the fine-grid
(D + 1) times. Therefore, the total computational cost of Algorithm I is N(D + 1)tf. For Algorithm III, the
gradient of the distribution is computed on the coarse-grid. However, the acceptance test is calculated on
the fine-grid for each proposal. Thus, its computational cost is N(Dtc + tf). In Algorithm II, the gradient
of the distribution is also computed on the coarse-grid. And each new sample is first tested by the
coarse-scale distribution. If it passes the coarse-grid acceptance test, then the proposal will be further tested
by the fine-scale distribution. Suppose M proposals (out of N) pass the coarse-scale test, then the total com-
putational cost of Algorithm II is N(D + 1)tc + Mtf. Thus, Algorithm II is NðDþ1Þtf

NðDþ1ÞtcþMtf
times faster than Algo-

rithm I, and NðDtcþtf Þ
NðDþ1ÞtcþMtf

times faster than Algorithm III. In our computations, D is of order of ten because
we represent the permeability field by its truncated Karhunen–Loève expansion. If the fine-scale model is
scaled up six times in each direction, as we did in the numerical experiment, then the coarse-scale model
is approximately 36 times faster than the fine-scale model. Indeed, at each time step solving the pressure
equation on the coarse grid is approximately 36 times faster than on the fine grid. The same is true for
the saturation equation since it is also solved on the coarse grid and with larger time steps. Moreover,
in the preconditioned coarse-gradient Langevin algorithm, only a portion of the N proposals can pass
the coarse-scale test, where N is usually two times larger than M. Using these estimates, we expect that
the CPU time of the preconditioned coarse-gradient Langevin algorithms should be an order of magnitude
lower than that of the fine-scale Langevin algorithm. We indeed observed a similar speedup in our compu-
tations, as demonstrated in Fig. 4.9.

Note that one can use simple random walk samplers, instead of the Langevin algorithm, in Algorithm I. We
have observed in our numerical experiments that the acceptance rate of the random walk sampler is several
times smaller than that of Langevin algorithms. This is not surprising because Langevin algorithms use the
gradient information of the target distribution and are problem adapted. One can also use single-phase flow
upscaling (as in [5]) in the preconditioning step as it is done in [9]. In general, we have found the multiscale
methods to be more accurate for coarse-scale simulations and they can be further used for efficient and robust
fine-scale simulations.

Finally, we present the results demonstrating the uncertainties in the predictions. In our simulations, we use
the information of the dynamic data in various time spans. In Fig. 4.12, various prediction results are plotted
based on information of the dynamic data on [0,0.8] PVI time (left figure), on [0,0.4] PVI time (middle figure),
and when no dynamic data information is used (right figure). These results are obtained by sampling 50 real-
izations from the posterior distribution. As we observe from the figure, the uncertainty spread is the largest if
no dynamic data information is used. However, the uncertainty spread decreases, as expected, if more infor-
mation is incorporated into the simulations. In particular, using the dynamic data information up to 0.8 PVI
allows us to obtain accurate predictions and reduce the uncertainties. These results allow us to assess the
uncertainties in the predictions.
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5. Conclusions

In this paper, we study the coarse-gradient Langevin algorithms for dynamic data integration. The gradi-
ents involved in Langevin algorithms are computed by inexpensive coarse-scale simulations using a multiscale
finite element framework. Furthermore, the proposals are tested with coarse-scale runs in order to increase the
acceptance rate. Numerical results show that the proposed algorithms are efficient and can give very similar
performance as the fine-scale Langevin algorithms with less computational cost.
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Appendix A. Coarse-scale models using multiscale finite element methods

In this Appendix, we will describe the details of our coarse-scale model. As we noted earlier, this model is
similar to single-phase upscaling method. However, instead of coarsening the absolute permeability, we use
pre-computed multiscale finite element basis functions. The key idea of the method is the construction of basis
functions on the coarse grids such that these basis functions capture the small scale information on each of
these coarse grids. The method that we use follows its finite element counterpart presented in [14]. The basis
functions are constructed from the solution of the leading order homogeneous elliptic equation on each coarse
element with some specified boundary conditions. Thus, if we consider a coarse element K which has d verti-
ces, the local basis functions /i, i = 1, . . . ,d satisfy the following elliptic problem:
�r � ðk � r/iÞ ¼ 0 in K

/i ¼ gi on oK; ðA:1Þ

for some function gi defined on the boundary of the coarse element K. Hou et al. [14] have demonstrated
that a careful choice of boundary condition would guarantee the performance of the basis functions to
incorporate the local information and hence improve the accuracy of the method. The function gi for each
i varies linearly along oK. Thus, for example, in the case of a constant diagonal tensor the solution of (A.1)
would be a standard linear/bilinear basis function. We note that, as usual, we require /i(nj) = dij. Finally, a
nodal basis function associated with the vertex n in the domain X is constructed from the combination of
the local basis functions that share this n and zero elsewhere. These nodal basis functions are denoted by
fwngn2Z0

h
.

Having described the basis functions, we denote by Vh the space of our approximate pressure solution
which is spanned by the basis functions fwngn2Z0

h
. Now we may formulate the finite dimensional problem cor-

responding to the finite volume element formulation of (2.2). A statement of mass conservation on a control
volume Vn is formed from (2.2), where now the approximate solution is written as a linear combination of the
basis functions. Assembly of this conservation statement for all control volumes would give the corresponding
linear system of equations that can be solved accordingly. The resulting linear system has incorporated the
fine-scale information through the involvement of the nodal basis functions on the approximate solution.
To be specific, the problem now is to seek ph 2 Vh with ph ¼

P
n2Z0

h
pnwn such thatZ Z
oV n

kðSÞk � rph �~ndl ¼
V n

f dA; ðA:2Þ
for every control volume Vn � X. Here ~n defines the unit normal vector on the boundary of the control
volume, oVn, and S is the fine scale saturation field at this point. We note that, concerning the basis functions,
a vertex-centered finite volume difference is used to solve (A.1), and a harmonic average is employed to
approximate the permeability k at the edges of fine control volumes.
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Furthermore, the pressure solution may be used to compute the total velocity field at the coarse-scale level,
denoted by �v ¼ ð�vx;�vzÞ via (2.6). In general, the following equations are used to compute the velocities in hor-
izontal and vertical directions, respectively:
�vx ¼ �
1

hz

X
n2Z0

h

pn

Z
E

kðSÞkx
own

ox
dz

� �
; ðA:3Þ

�vz ¼ �
1

hx

X
n2Z0

h

pn

Z
E

kðSÞkz
own

oz
dx

� �
; ðA:4Þ
where E is the edge of Vn. Furthermore, for the control volumes Vn adjacent to the Dirichlet boundary (which
are half control volumes), we can derive the velocity approximation using the conservation statement derived
from (2.2) on Vn. One of the terms involved is the integration along part of the Dirichlet boundary, while the
rest of the three terms are known from the adjacent internal control volumes calculations. The analysis of the
two-scale finite volume method can be found in [11].

As for the upscaling of the saturation equation, we only use the coarse scale velocity to update the satura-
tion field on the coarse-grid, i.e.,
oS
ot
þ �v � rf ðSÞ ¼ 0; ðA:5Þ
where S denotes the saturation on the coarse-grid. In this case the upscaling of the saturation equation does
not take into account subgrid effects. This kind of upscaling techniques in conjunction with the upscaling of
absolute permeability are commonly used in applications (see e.g. [6–8]). The difference of our approach is that
the coupling of the small scales is performed through the finite volume element formulation of the pressure
equation.
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